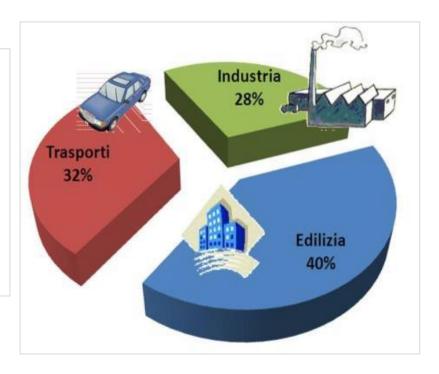


WORKSHOP ENERGIA E SOSTENIBILITÀ PER LA P.A.: STRUMENTI PER LA RIQUALIFICAZIONE ENERGETICA E SISMICA

Soluzioni progettuali per interventi di efficientamento energetico sugli edifici

Benevento 13/06/2019

Arch. Francesca Margiotta

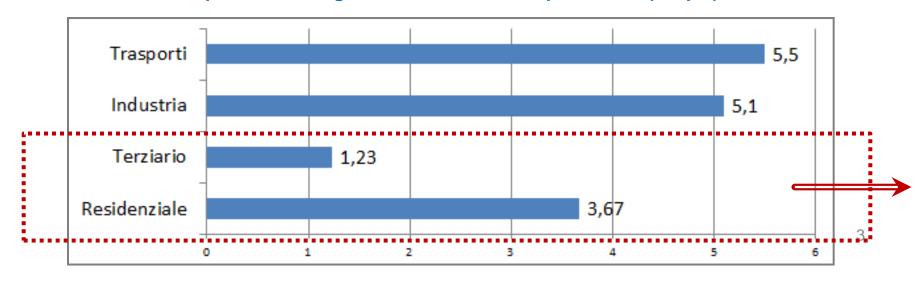


Impieghi finali di energia

La conservazione e la riqualificazione degli <u>edifici esistenti</u>, di *importanza storica e monumentale e non*, è un tema rilevante e strategico in ambito nazionale, europeo ed internazionale.

Questo è ancora più vero in ambito energetico dato che il patrimonio edilizio esistente copre circa il 40% degli impieghi finali nazionali di energia. Il rimanente 60% è impiegato per circa il 28% dal settore industriale e per circa il 32% dal settore trasporti.

Consumi energetici

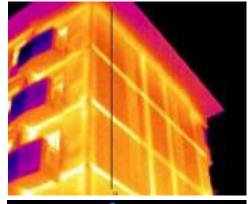

48,4 Mtep Consumo energetico finale (anno 2015)

Di cui:

32,5 Mtep Residenziale

15,9 Mtep Terziario

Risparmio di energia finale atteso al 2020 per settore (Mtep/a)



Consumi energetici

Consumo medio:

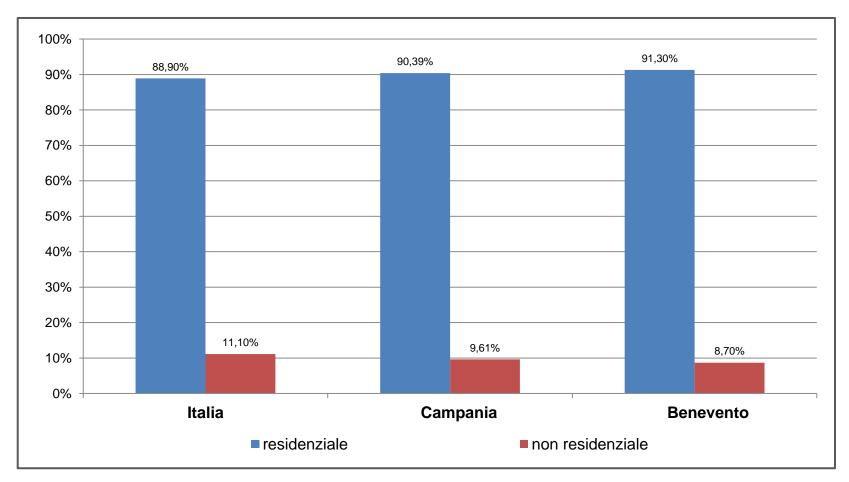
Residenziale: 110 kWh/m²a

Terziario: 80 ÷ 170 kWh/m²a

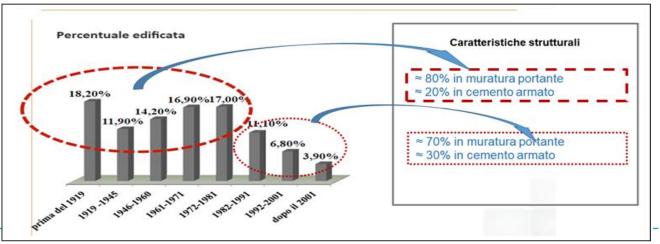
Gli **edifici** hanno un grosso potenziale di efficientamento e risparmio energetico

Strumenti più efficaci per raggiungere gli obiettivi di:

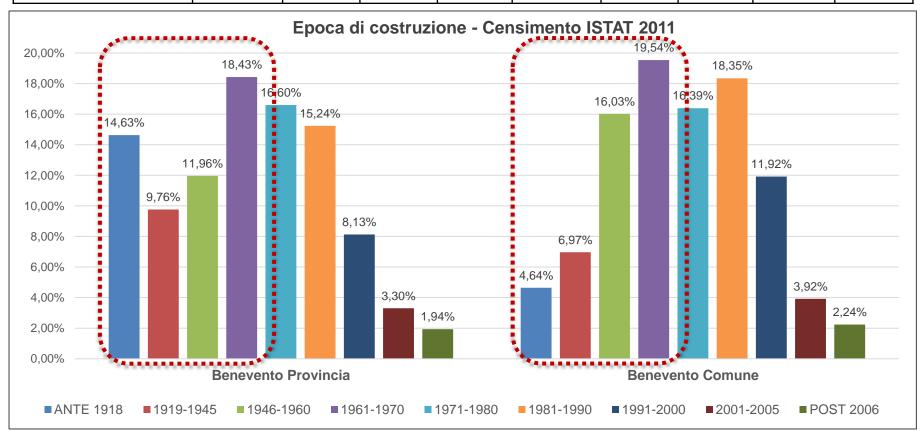
- minimizzare i consumi
- migliorare il comfort interno
- aumentare la sostenibilità ambientale



Distribuzione del patrimonio edilizio per tipologie d'uso degli edifici

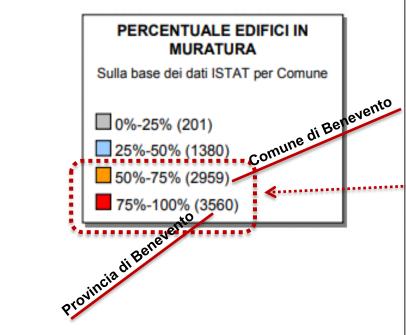


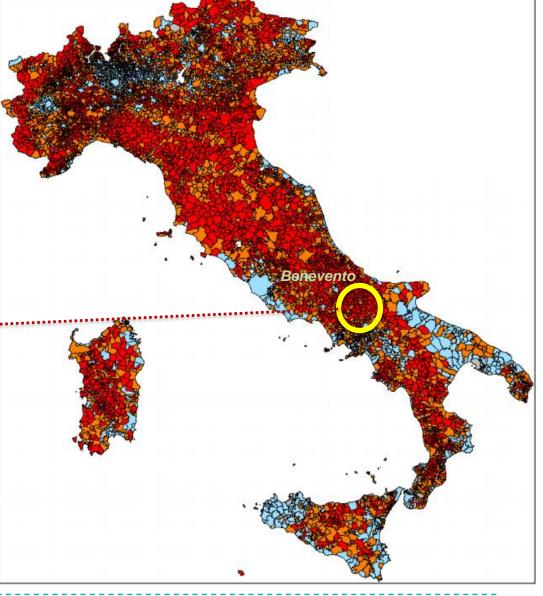
Patrimonio edilizio italiano

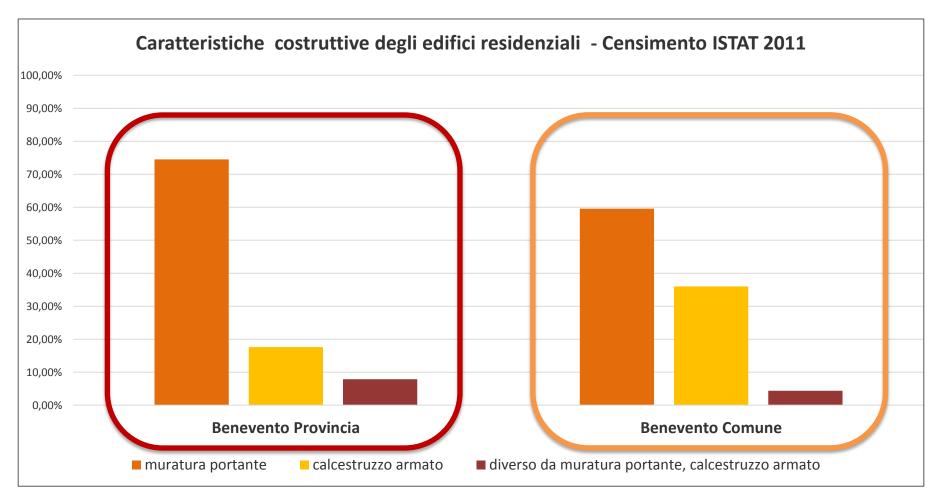


Parco residenziale - Benevento

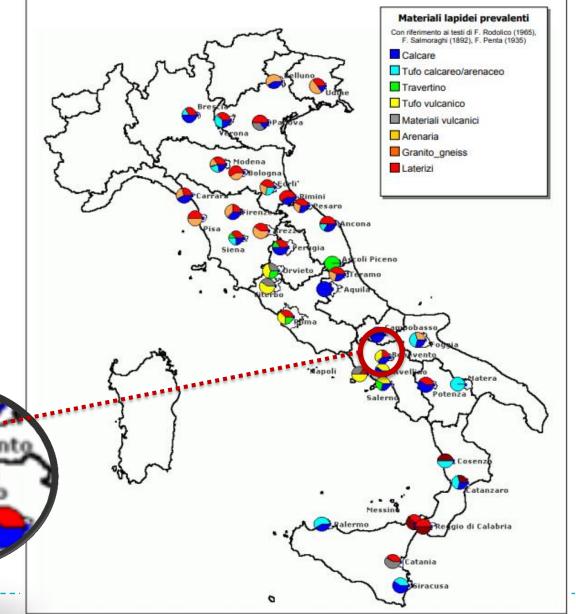
Epoca di costruzione	ANTE 1918	1919-1945	1946-1960	1961-1970	1971-1980	1981-1990	1991-2000	2001-2005	POST 2006
Benevento Provincia	12149	8105	9927	15302	13780	12654	6750	2741	1607
Benevento Comune	355	533	1226	1495	1254	1404	912	300	171







Parco residenziale - Benevento



<u>Parametri</u>: il DM requisiti definisce, oltre agli indici di prestazione energetica, anche i seguenti parametri e coefficienti:

- H'_T = coefficiente medio globale di scambio termico per trasmissione per unità di superficie disperdente espresso in kW/m²K
- A_{sol,est} /A_{sup utile} = area solare equivalente estiva per unità di superficie utile
- η_H = efficienza media stagionale dell'impianto di climatizzazione invernale
- η_W = efficienza media stagionale dell'impianto di produzione dell'acqua calda sanitaria
- η_W = efficienza media stagionale dell'impianto di climatizzazione estiva (compreso l'eventuale controllo dell'umidità)

Verifica della <u>Trasmittanza</u> termica periodica

D.M. 26/06/2015

- Adeguamento del decreto del Ministro dello sviluppo economico, 26 giugno 2009 - Linee guida nazionali per la certificazione energetica degli edifici.
- Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici.
- Schemi e modalità di riferimento per la compilazione della relazione tecnica di progetto ai fini dell'applicazione delle prescrizioni e dei requisiti minimi di prestazione energetica negli edifici.

Massa superficiale Ms (calcolata secondo la definizione dell'All.A del Dlgs 192/05 come massa superficiale della parete opaca compresa la malta dei giunti ed esclusi gli intonaci) sia superiore di 230 kg/m²

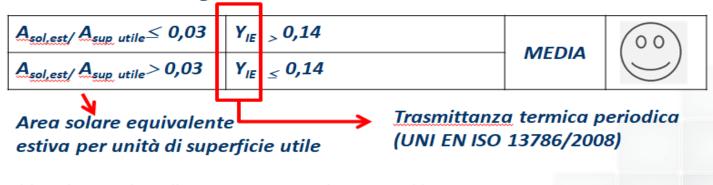
Valori limite <u>trasmittanza</u> termica periodica (Y_{i,e}) W/m²K

	D.P.R. 59/2009	D.M. 26/06/2015
Pareti opache verticali (ad eccezione di quelle nel quadrante N- O/N/N-E):	Y _{i.e} ≤ 0,12 W/m²K	Y _{i.e} ≤ 0,10 W/m²K
Pareti opache orizzontali ed inclinate:	Y _{ie} ≤ 0,20 W/m²K	Y _{i.e} ≤ 0,18 W/m²K

Zone interessate alla verifica Yi,e

Zone non interessate alla verifica Yi,e

Edifici ricadenti nelle località del territorio nazionale con valore di Irradianza (I)>290 W/m² esclusa zona climatica F:


Verifiche « Qualità media »

Prestazione energetica invernale dell'involucro:

Indice di prest, termica utile per il riscaldamento (kWh/m²) dell'edificio di riferimento, ipotizzando che in esso siano installati elementi edilizi che rispettino i requisiti minimi di legge in vigore dal 2019/2021

Prestazione energetica estiva dell'involucro:

(da <u>Tab</u> 3 e <u>Tab</u> 4 Allegato 1 Linee Guida Nazionali)

Bilancio di energia

Il bilancio di energia sull'involucro edilizio include quindi:

in uscita

- dispersioni termiche per trasmissione dall'ambiente interno riscaldato verso quello esterno o verso spazi non riscaldati, $Q_o = Q_{H,tr}$
- dispersioni termiche per infiltrazioni e/o ventilazione dall'ambiente interno riscaldato verso quello esterno o verso spazi non riscaldati, $Q_{H,ve}$

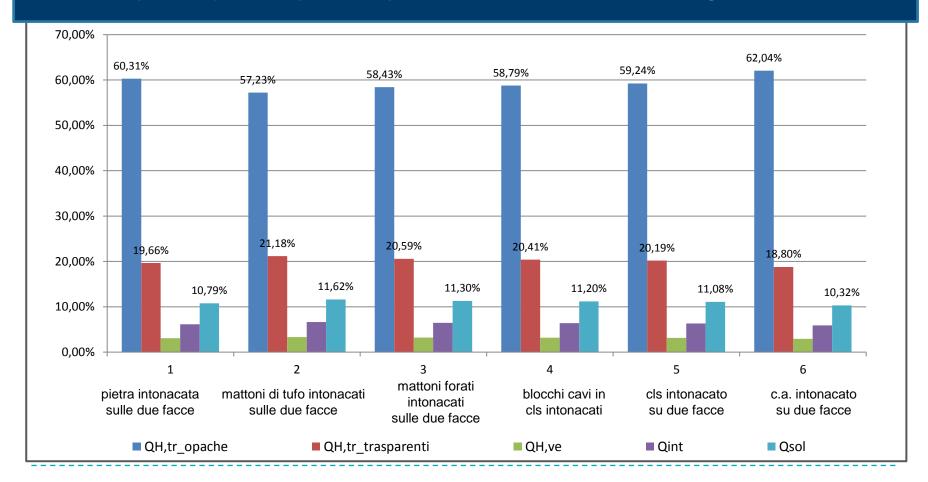
in ingresso

- apporto di calore fornito dal sistema di riscaldamento, $Q_{risc}=Q_{H,nd}$
- apporti di calore gratuiti dovuti alle sorgenti interne, **Q**_{int}
- apporti di calore gratuiti legati alla radiazione solare, Q_{sol}

Sempre in relazione all'intervallo temporale $\Delta\theta$ si ha quindi:

$$Q_{H,nd} = Q_{H,tr} + Q_{H,ve} - Q_{int} - Q_{sol}$$

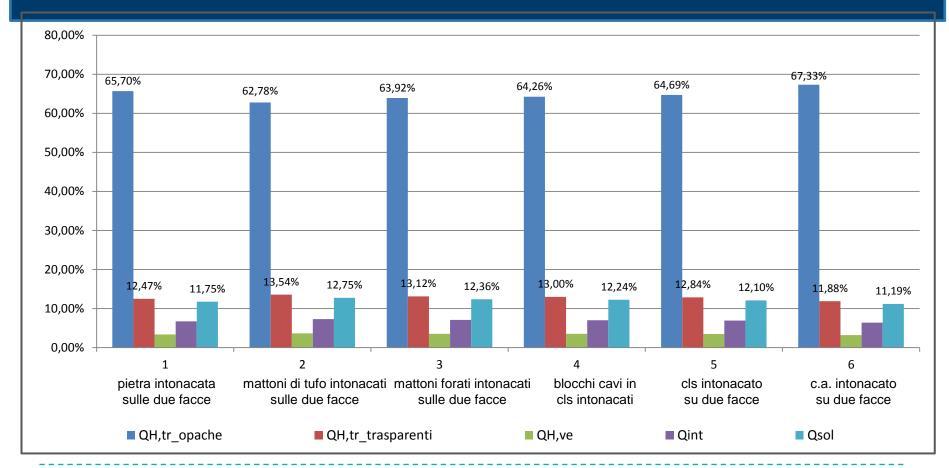
Caratteristiche costruttive


	https://it.climate-data.org/europa/italia/campania/benevento-1166/											
	Gennaio	Febbraio	Marzo	Aprile	Maggio	Giugno	Luglio	Agosto	Settembre	Ottobre	Novembre	Dicembre
TEMPERATURE MEDIE ESTERNE	7,4	8,2	10	12,9	17	21	23,5	23,6	20,8	16,3	12,1	8,8
TEMPERATURA INTERNA	20	20	20	20	26	26	26	26	26	20	20	20
DELTA (Ti-Te)	12,6	11,8	10	7,1	9	5	2,5	2,4	5,2	3,7	7,9	11,2

			NOVEMBRE - DE	ELTA (TI-Te): 7.9°C			
Pareti vs esterno		muri in pietra intonacati	muri in mattoni di tufo	muri in mattoni forati	muri in blocchi cavi	muri in cls intonacato	muri in c.a.
1 41041 13 00101110		sulle due facce			in cls intonacati	su due facce	intonacato su due facce
		1567,76	1003,70	1213,44	1278,62	1362,75	1926,81
SOFFITTI e PAVIMENTI	Pavimento	1443,73	1443,73	1443,73	1443,73	1443,73	1443,73
Solai in laterizio armato	Soffitto	1718,25	1718,25	1718,25	1718,25	1718,25	1718,25
Infissi	Semplice con telaio di metallo	1541,76	1541,76	1541,76	1541,76	1541,76	1541,76
		7842,80	7278,74	7488,49	7553,66	7637,80	8201,86
	Semplice con telaio di legno	1285,17	1285,17	1285,17	1285,17	1285,17	1285,17
		7586,21	7022,15	7231,90	7297,07	7381,21	7945,27
	Telaio di metallo no TT e vetri doppi	898,07	898,07	898,07	898,07	898,07	898,07
		7199,11	6635,05	6844,80	6909,97	6994,11	7558,17
	Telaio di legno e vetri doppi	641,48	641,48	641,48	641,48	641,48	641,48
		6942,52	6378,46	6588,21	6653,38	6737,52	7301,58
	Telaio metallo TT e doppi vetri	608,30	608,30	608,30	608,30	608,30	608,30
		6909,34	6345,28	6555,03	6620,20	6704,34	7268,40
	Doppio telaio	513,18	513,18	510.10	513.18	542.40	512.10
	legno e doppi vetri	513,16	513,16	513,18	513,16	513,18	513,18
		6814,22	6250,16	6459,91	6525,08	6609,22	7173,28
Ventilazione- infiltrazione: 0,3 r/h -		241,74	241,74	241,74	241,74	241,74	241,74
$\rho_a c_a 0,34$							
Apporti interni		483,48	483,48	483,48	483,48	483,48	483,48
Apporti solari		846,09	846,09	846,09	846,09	846,09	846,09
			DICEMBRE - DE	LTA (Ti-Te): 9.3°C			
			BIOLINGINE BE	- m (m 10). 0.0 0			

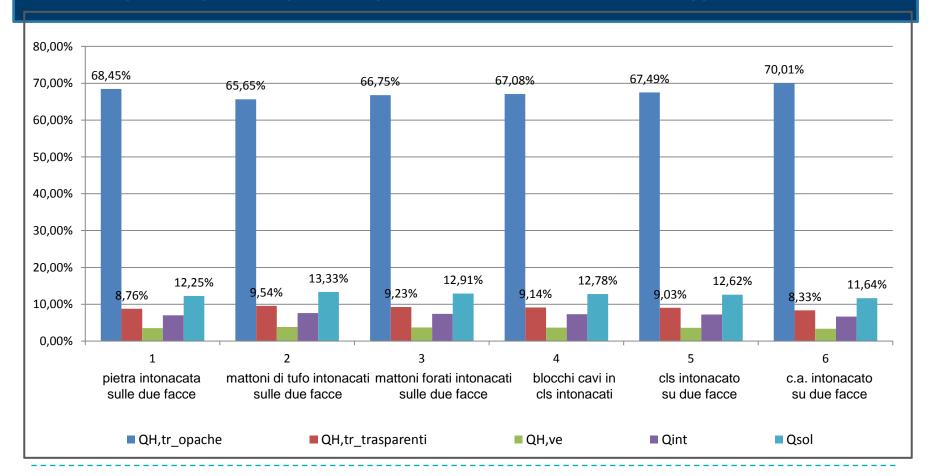
Prestazione energetica involucro

Muratura portante (1,2,3,4,5,6), soffitti e pavimenti in laterizio – infissi vetro singolo e telaio metallo



Prestazione energetica involucro

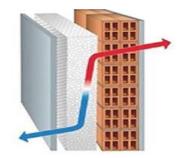
Muratura portante (1,2,3,4,5,6), soffitti e pavimenti in laterizio – infissi vetro doppio e telaio metallo NoTT



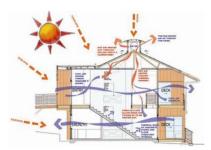
Prestazione energetica involucro

Muratura portante (1,2,3,4,5,6), soffitti e pavimenti in laterizio – infissi vetro doppio e telaio metallo TT

soluzioni tecniche e scelte progettuali.



Fonti rinnovabili



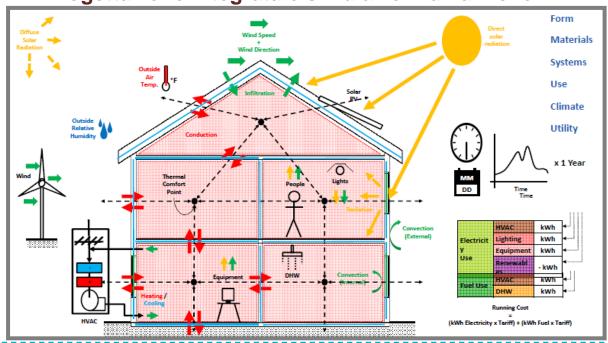
Pareti ventilate

Capacità termica

Ventilazione

Pareti vetrate

Sistemi di ombreggiamento



... soluzioni tecniche e scelte progettuali.

Componenti chiave della progettazione energetica

FORMA MATERIALI IMPIANTI Impianti termici Conducibilità termica Superfici Impianti elettrici Volumi. Massa termica Capacità termica Fonti rinnovabili Rapporto S/V, Sistemi di controllo Ermeticità Orientamento, Controllo solare Sistemi di monitoraggio Ombreggiatura

Progettazione integrata e simulazioni dinamiche

Metodologie di calcolo

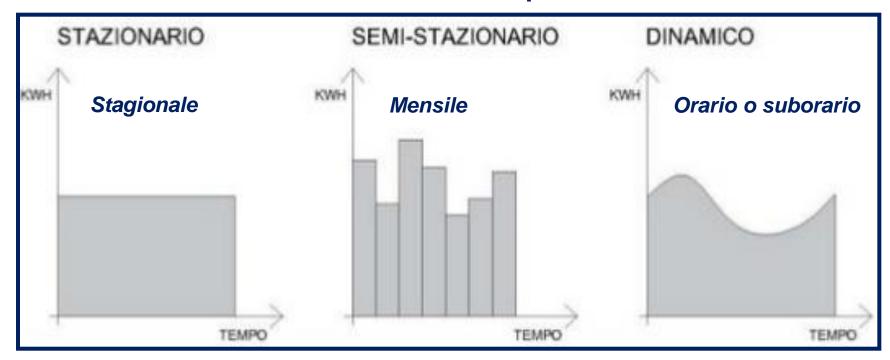
Metodi di calcolo *stazionari* (convenzionali): limiti principali

- inefficacia quando i sistemi da progettare assumono un consistente grado di complessità.
- impossibilità di valutare contemporaneamente interazioni tra edifici
 - sistemi di generazione dell'energia,
 - utenze variabili,
 - o condizioni climatiche variabili,
 - o presenza di fonti rinnovabili,
 - variabilità dei prezzi delle fonti fossili e
 - vincoli normativi ed economico-finanziari.

Metodi di calcolo *dinamici*: perché?

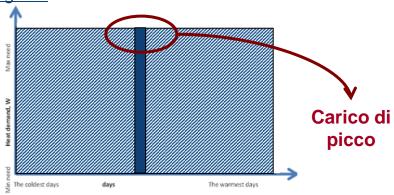
Possibilità di valutare:

- il comportamento degli **impianti** al variare del carico termico ed elettrico dell'edificio, della modalità di gestione degli impianti e del comportamento degli occupanti
- l'integrazione di più tecnologie ad alta efficienza energetica (fonti rinnovabili, cogenerazione, solar cooling, etc) in funzione delle caratteristiche meteo del sito, della disponibilità e costo delle fonti energetiche e delle richieste del territorio (approccio sistemico e integrato).



Metodologie di calcolo

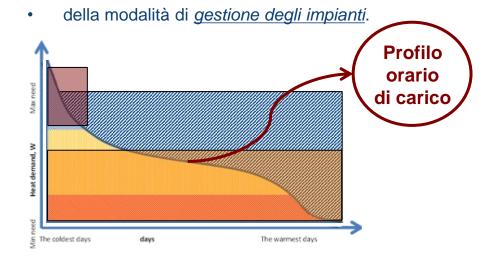
Differenze tra intervalli temporali di calcolo:



Metodologie di calcolo

Modelli stazionari: dimensionamento di sistemi e componenti in funzione di:

- "temperatura esterna di progetto"
- profilo di carico del giorno più critico


SVANTAGGI: impossibilità di <u>analizzare i comportamenti</u> <u>del sistema impiantistico al di fuori delle condizioni di</u> progetto!

Rischio di **sovradimensionamento** dell'impianto o di operare in condizioni lontane da quelle di ottimo!

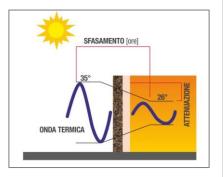
Metodi dinamici: valutazione del comportamento dei sistemi di generazione al variare del carico termico ed elettrico dell'edificio in funzione:

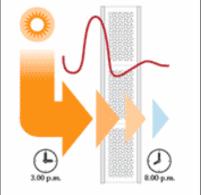
- delle caratteristiche <u>meteo</u> del sito,
- della disponibilità e costo delle <u>fonti energetiche</u>,
- del comportamento delle <u>utenze (occupanti,</u> <u>illuminazione, apparecchiature)</u>,

Equazione di bilancio energetico fra il sistema-edificio e l'ambiente esterno:

q_{entrante} + q _{sorgenti} – q_{uscente} = Accumulo termico

$$Accumulo _termico = \sum_{i} m_{i} c_{i} \frac{dT_{i}(t)}{dt}$$


m_ic_i è la capacità termica elementi presenti nell'edificio


ACCUMULO TERMICO

VOLANO TERMICO

Studio dei <u>transitori</u> del sistema edificio impianto: aspetto fondamentale per tener conto delle **rientranze di calore** (particolarmente in regime estivo) (variabilità del verso dei flussi termici scambiati con l'ambiente esterno).

Inerzia termica

Al fine di limitare il fabbisogno per la climatizzazione estiva e di contenere la temperatura interna degli ambienti, è opportuno verificare il comportamento "inerziale" della chiusura.

L' "INERZIA TERMICA" è l'attitudine della parete a ridurre (smorzamento) e ritardare (sfasamento) l'effetto di sollecitazioni dinamiche sul carico termico dell'ambiente.

Si distingue tra sollecitazioni termiche ESTERNE ed INTERNE

sul lato esterno del componente

- variazione giornaliera della temperatura esterna
- variazione giornaliera della radiazione incidente sul componente

sul lato interno del componente

- radiazione solare attraverso i vetri
- occupazione, apporti interni
- intermittenza impianto di riscaldamento/raffrescamento

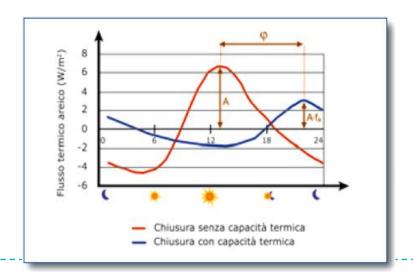
Parametri termici dinamici

Lo strumento al quale la legislazione energetica nazionale fa riferimento per il calcolo dei **parametri termici dinamici**, è la norma **UNI EN ISO 13786**. Tale norma è basata sul metodo delle ammettenze e propone un modello di calcolo semplificato delle prestazioni termiche dinamiche del componente edilizio opaco, ipotizzando una sollecitazione termica di tipo sinusoidale, con periodo di 24 ore (regime periodico stabilizzato).

I principali parametri utilizzati per la caratterizzazione dinamica dei componenti, sono:

- la capacità termica areica interna
- la trasmittanza termica periodica
- il fattore di attenuazione
- lo sfasamento termico

La <u>capacità termica</u> areica interna esprime l'attitudine del componente opaco in esame ad accumulare calore quando sottoposto ad una sollecitazione termica dinamica sulla sua faccia interna, ed è calcolata secondo l'equazione


Capacità termica

- Il fattore di attenuazione f_a è uguale al rapporto fra il massimo flusso della parete capacitiva ed il massimo flusso della parete a massa termica nulla; esso dunque qualifica la riduzione di ampiezza dell'onda termica nel passaggio dall'esterno all'interno dell'ambiente attraverso la struttura in esame.

Indica la differenza di temperatura e dunque la capacità di una struttura d'involucro di <u>attenuare l'ampiezza d'onda del flusso termico</u>, nel suo passaggio dall'ambiente esterno a quello interno, producendo una riduzione della temperatura esterna.

- Il coefficiente di sfasamento Φ (espresso in ore) rappresenta il ritardo temporale del picco di flusso termico della parete capacitiva rispetto a quello istantaneo, nel passaggio dall'esterno all'interno dell'ambiente attraverso la struttura in esame.

Indica il *tempo*, espresso in <u>ore, che l'onda termica esterna impiega</u> <u>a produrre un effetto sensibile di aumento della temperatura superficiale nella sua parte interna</u>; indica la capacità di una struttura d'involucro di creare una differenza di fase d'onda del flusso termico, nel suo passaggio dall'ambiente esterno a quello interno, producendo un ritardo nel tempo degli effetti termici esterni, espresso in ore.

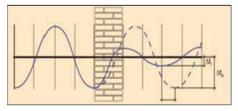
Sfasamento (ore)	Attenuazione	Prestazioni	Qualità prestazionale
S > 12	Fa<0,15	ottime	1
12 ≥ S > 10	0,15≤ Fa <0,30	buone	II
10 ≥S > 8	0,30≤ Fa <0,40	medie	III
8 ≥S > 6	0,40≤ Fa <0,60	sufficienti	IV
6≥S	0,60≤ Fa	mediocri	V

Fattore di attenuazione

▶ I <u>valori sono compresi fra 0 e 1</u> in cui il valore minimo indica il totale accumulo di calore e il valore massimo indica l'assenza di accumulo e pertanto una minor capacità dissipativa

solai di copertura in legno

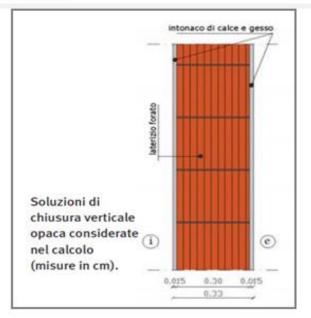
0,8<f<0,9

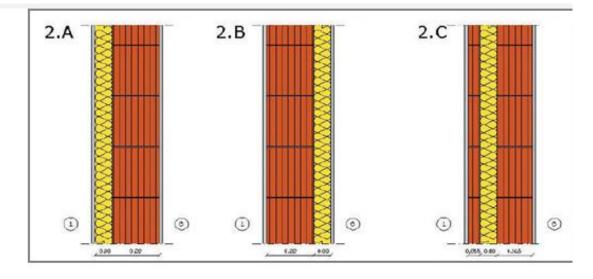

Sfasamento

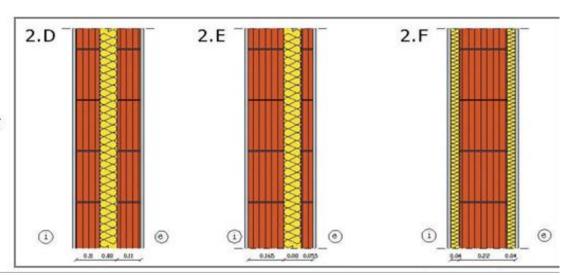
- ➡ E' il tempo (ore) che serve all'onda termica per fluire dall'esterno all'interno attraverso una stratigrafia (orizzontale o verticale)
- Maggiore è lo sfasamento, più lungo sarà il tempo di passaggio del calore all'interno dell'edificio e dunque maggiore "schermatura" nella stagione estiva
- E' la differenza di tempo che intercorre tra l'ora in cui si ha la massima temperatura all'ester e l'ora in cui si ha la massima temperatura all'interno

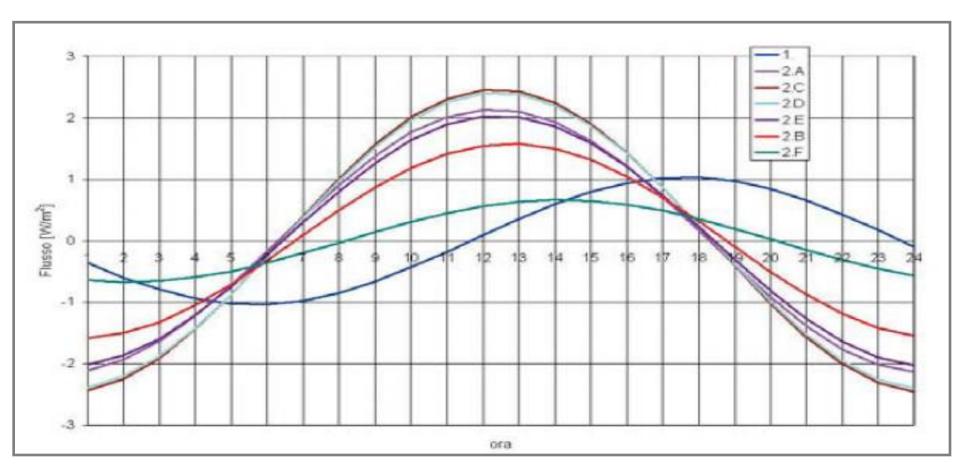
Sfasamento "consigliato" pari a 8-12 ore Per un buon comfort termico

Parametro che privilegia caratteristiche massive dei materiali con maggiori capacità di accumulo termico








Caratteristiche in comune:

- Spessore di 33 cm
- Massa superficiale di 210 kg/m²
- Trasmittanza termica stazionaria di 0,4 W/m²K

EN ISO 13786:2008

Arch. PhD Francesca Margiotta francesca.margiotta@enea.it

